

What the numbers don't tell you!

Measuring Aggregate Size

Sieve Size..

 Used to describe material which will when shaken, pass through a defined square opening.

It says nothing about..

- Shape
- Flakiness
- Voids ratio in loose material
- Stone density

- 3 inch aggregate

"Numbers Problem #2." Inverse Calibration..

- By using weight as the defining measure of what is primarily a volumetric relationship;
- Step 1..volume to weight conversion.
- Step 2...weight to volume conversion.
- Do we get what we started with??
- Weight of what? Shape, grading and density.

By using weight as the defining measure of what is primarily a volumetric relationship, we are making a volume to weight conversion and then reversing it to a weight to volume conversion. Do we get what we started with??

- Путем использование веса как определяющ измерением будет главным образом объемное отношение, мы делаем том для утяжеления преобразования и после этого обращаем его к весу к преобразованию тома. Мы получаем мы начали с??
- By use of weight as определяющ measurement will be mainly the volumetric attitude, we do volume for weighting transformation and after that we turn it to weight to transformation of volume. We receive we have begun with??
- 由使用重量作为定义什么的措施是 主要一个容量关系,我们做容量衡 量转换和然后扭转它对重量对容量 转换。我们得到什么我们开始了与 ??
- Defines any by the operating weight achievement the measure is the main capacity relations, we make the capacity weight transformation and then reverse it to the weight to the capacity transformation. What did we obtain us to start and? ?
- Chinese is even worse!

Not exactly!

Mixing Step 1; Proportioni	RCC. ng the Ingred	ients.
 Each of the ingredients must be present in the correct proportions each 	Throughput m3/hr 400 Material Spec	Mix Proportion (Recipe) kg / m3
to the other. This process is variously 	Flyash	100
called;	Total Cementitious	200
Batching	Sq (quarry sand) Sm (mining sand)	594 255
Metering	63~40 mm" 20~5 mm	226 543
Proportioning.	40~20 mm	453
	Total Aggregates	2271
We will use the term "proportioning" to	Total Dry Weight Water A	2471 60
"proportioning" to generalize.	Water B Total Water	80
gonoranzo.	Total Ingredients	2611
		ABAN

The Pi		ropol Is can be		ng sed in m	any wa	ays.
Throughput m3/hr 300 Material Spec	Mix Proportion (Recipe) kg / m3	Mbx Proportion % of Dry Weight	Input Tonnes per Hour	Loose Density tonnes / m3	Loose Volume m3/hr	Req'd Feeder Speed from sensor Hz
Flyash	100	4.0%	30.0	1.20	25.00	4.82
Cement	100	4.0%	30.0	1.13	26.55	5.12
Total Cementitious	200	8.1%	60.0		60.0	
Sq (quarry sand)	594	24.0%	178.2	1.38	129.13	10.00
Sm (mining sand)	255	10.3%	76.5	1.26	60.71	4.70
63~40 mm"	226	9.1%	67.8	0.95	71.37	5.53
20~5 mm	543	22.0%	162.9	1.22	133.52	10.34
40~20 mm	453	18.3%	135.9	0.85	159.88	12.38
Total Aggregates	2271	91.9%	681.3		681.3	
Total Dry Weight	2471	100.0%	741.3		741.3	
Water A	60	2.4%	18.00	1.00	18.00	266.22
Water B	80	3.2%	24.00	1.00	24.00	351.70
Total Water	140	5.7%	42.00			
Total Ingredients	2611	105.7%				

- For more, repeat steps 1 to 5 over and over.
- To go faster, make bigger batches, or have more weighing and mixing systems.
- Every batch is a
- NEW PROJECT.

- PROPORTIONING.
- At any instant, all of the ingredients in the feed stream are in the correct proportion one to another.
- The mixer takes that stream and completes the job of macro and micro mixing to achieve homogeneity.

Making RCC to a Recipe.. The Continuous Mixing Approach.

- 1. Set up the recipe and the required output rate.
- 2. Start the system.
- 3. Make a coffee or have some fun.
- 4. When the job is done, stop the system.

Making RCC to a Recipe.. The Continuous Mixing Approach.

- For large quantities, run as long as is needed.
- To go faster, speed it up.

			Problem	,, , , , , , , , , , , , , , , , , , , ,	aran
	 The Included Wat Fines can carry a Commonly range 	lot of wate	r0% to 20%.	ch	
	Throughput m3/hr	Mbx	Water	Water	Target —
/		Proportion	included	Included	Batch
	Material	(Recipe)	with Agg	with Agg	Weight
	Spec	kg / m3	% of Dry Weight	kg/m#	kg / m3
	Flyash	100			100
	Cement	100			100
	Total Cementitious	200			200
	Sq (quarry sand)	594	3.0%	17.8	612
	Sm (mining sand)	255	6.0%	15.3	270
	63~40 mm"	226	1.0%	2.3	228
	20~5 mm	543	1.5%	8.1	551
	40~20 mm	453	1.3%	5.9	459
	Total Aggregates	2271	Total Ind Water	49.4	2320
	Total Dry Weight	2471	Total Wet Weight		2520
	Total Water	140		Added Water	90.6
	Total Ingredients	2611			2611

U	'Num	nbers	Prob	olem	า #3.	"	AR
		ntent Do					tor?
10131		nent Do	Thave	Sanu	/ 11163 (Jiwa	
The Inclu	ided Wa	ter Problem	The C	ontinuo	us Appro	bach	
Throughput m3/hr	Mix	Water	Water	Input	Loose	Loose	Regid Feeder
account and a second	Proportion	included	included	Tonnes	Density	Volume	Speed
Material	(Recipe)	with Agg	with Agg	per Hour	(dry)	m3/hr	from sensor
Spec	kg/m3	% of Dry Weight	kg/m3	(dry)	tonnes / m3		Hz
Flyash	100			30.0	1.20	25.00	4.82
Cement	100			30.0	1.13	26.55	5.12
Total Cementitious	200			60.0		60.0	
Sq (quarry sand)	594	3.0%	17.8	178.2	1.38	129.13	10.00
Sm (mining sand)	255	6.0%	15.3	76.5	1.26	60.71	4.70
63~40 mm"	226	1.0%	2.3	67.8	0.95	71.37	5.53
20~5 mm	543	1.5%	8.1	162.9	1.22	133.52	10.34
40~20 mm	453	1.3%	5.9	135.9	0.85	159.88	12.38
Total Aggregates	2271	Total Ind Water	49.4	681.3		681.3	
Total Dry Weight	2471	Total Wet Weight		741.3		741.3	
Water A	60	Added Water	60	18.0	1.00	18.00	266.22
Water B	80	Added Water	30.6	9.2	1.00	9.18	134.46
Total Water	140		140	27.2			
Total Ingredients	2611						

 Batch Approa Batching syst If included wat 	ach. tem takes no a ater adjustmer	It Do I ha				
The added w	nt or number o ater amount is	of grains of sand	d is also wro	ng.		
Throughput m3/hr 300 Material	Mix Proportion (Recipe)	Water Included with Agg	Water Included with Agg	Target Batch Weight	Actual Incl Water with Agg	Dry Weight Error
Spec	ka / m3	% of Dry Weight	ka/m#	ka / m3	% of DryWeight	kg
Flyash Cement	100			100 100		
Total Cementitious	200			200		
	594	3.0%	17.8	612	4.0%	-5.9
So (quarry sand)			1= 0	270	7.0%	-2.6
Sq (quarry sand) Sm (mining sand)	255	6.0%	15.3	270	7.0%	-2.0
Sm (mining sand)	255 226	6.0% 1.0%	15.3 2.3	270	1.0%	-2.6
Sm (mining sand) 63~40 mm	226	1.0%	2.3	228	1.0%	0
Sm (mining sand) 63~40 mm	226 543	1.0% 1.5%	2.3 8.1	228 551	1.0% 1.5%	0

- Significant and variable water addition corrections during mixing indicate variable fines addition.
- Mixer load varies with batch size. Correction only works, more or less for multiple batches of the same size.
- The "numbers do not tell you exactly how much fines is in the mix."

 Load Cells A load cell is an accurately shaped metal block which when subjected to load deflects. A resistance grid known as a Wheatstone Bridge is glued to it. The strain resulting from the load alters the resistance of the bridge. Load Cell Sensitivity is quoted in miliVolts/Volt. Note that the load cell sensitivity has a wide tolerance. No two similar cells are the same. Each has to be individually calibrated. Note that Error is quoted as % of Full Scale Deflection. SPECIFICATIONS Rated Capacities 25,50,75,100,150,200,250,500,750,1K,2K,2.5K,3K,5K,10K,15K & 20KLb Full Scale Output - 25 - 3KLb 3.0m/V/ +25%/-10% -5K - 20KLb. 3.0m/V/ +25%/-10% Combined Error \$0.03% FS Non-Linearity \$0.03% FS Hysteresis \$0.0015% FS/F Temperature Effect on Zero \$0.0015% FS/F Temperature Effect on Output \$0.0015% FS/F Temperature Effect on Output \$0.0015% FS Zero Balance \$1.0% FS Doerating Temperature Range \$10% 16% C	Weighers % of full	rs Problem #4." scale deflection. True accuracy at working load?	
Rated Capacities 25,50,75,100,150,200,250,500,750,1K,2K,2.5K,3K,5K,10K,15K & 20KLb Full Scale Output - 25 - 3KLb 3.0mV/V +25%/-10% -5K - 20KLb. 3.0mV/V +225%/-10% Combined Error \$0.03% FS Non-Linearity <0.03% FS Vysteresis \$0.02% FS Creep Error \$0.03% FS in 20 minutes Temperature Effect on Zero \$0.001% FS/F Temperature Effect on Output \$0.0008% of Load °F Non-Repeatability \$0.01% FS Zero Balance \$1.0% FS Insulation Resistance >1000 MΩ at 50V dc Compensated Temperature Range -10° to +40°C	A load cell is an accurately shaped A resistance grid known as a Whe The strain resulting from the load a Load Cell Sensitivity is quoted in m Note that the load cell sensitivity h No two similar cells are the same.	atstone Bridge is glued to it. alters the resistance of the bridge. niliVolts/Volt. as a wide tolerance. Each has to be individually calibrated.	
Full Scale Output - 25 - 3KLb $3.0mV/V + 259\%-10\%$ - SK - 20KLb. $3.0mV/V + -0.25\%$ Combined Error $\le 0.03\%$ FS Non-Linearity $\le 0.03\%$ FS Hysteresis $\le 0.02\%$ FS Creep Error $\le 0.02\%$ FS in 20 minutes Temperature Effect on Zero $\le 0.0015\%$ FS in 20 minutes Temperature Effect on Output $\le 0.0008\%$ of Load °F Non-Repeatability $\le 0.01\%$ FS Zero Balance $\le 1.0\%$ FS Insulation Resistance >1000 MΩ at 50V dc Compensated Temperature Range -10° to $+40^\circ$ C	SPECIFICATIONS		
	Full Scale Output - 25 – 3KLb - 5K – 20KLb. Combined Error Non-Linearity Hysteresis Creep Error Temperature Effect on Zero Temperature Effect on Output Non-Repeatability Zero Balance Insulation Resistance	3.0mV/V+25%/-10% 3.0mV/V+/-0.25% ≤0.03% FS ≤0.003% FS ≤0.003% FS/FF ≤0.0015% FS/°F ≤0.0015% FS ≤0.0015% FS ≤0.0015% FS ≤0.0015% FS ≤1.0% FS >1000 MΩ at 50V dc -10° to +40°C	

Factors affecting Batch Systems..

- Weigher accuracy & Weigher calibration.
- The weights of the individual ingredients are the only thing measured.
- The accuracy, repeatability and calibration of the weigher are critical.
- Does a weigher always tell the truth? Truth is relative to the calibration.
- Ask the guy who bought more accurate weigh scales for his wife for Christmas only to make her appear heavier.
- This affects both batch and continuous plants where weight methods are used.
- Calibrate Regularly!

Factors affecting Batch Systems..

- Affect of Air Pressure.
- Most batching systems operate gates pneumatically.
- Air pressure and resistance of the gate affect response.
- If air supply is marginal, loss and regain of pressure results in loss of repeatability of the "in flight" correction procedure.

"Numbers Problem #5."... Factors affecting Batch Systems..

- Cumulative Weighing or Individual Weighing.
- Each group of materials may be cumulatively weighed in a common weigh vessel.
- An error in one ingredient affects the accuracy of the remaining ingredients.

Non Linear Weigher	Recipe	Cumulative	Weigher Error	Cumulative Actual	ingredient Quantity	Ingredient Error	Ingredient Error	
Aggregate 1	500	500	-2.0%	490	490	-10	-2%	
Aggregate 2	600	1100	0.0%	1100	610	10	2%	
Sand	700	1800	1.5%	1827	727	27	4%	
Aggregate 3	450	2250	2.0%	2295	468	18	4%	
Total dry weight	2250	2250		2295			2.0%	
				t				

Factors affecting Batch Systems...

Erratic Sand Flow 1	Recipe	Cumulative	Error	Cumulative Actual	Ingredient Quantity	ingredient Error	Ingredient Error
Aggregate 1	500	500	0.5%	502.5	502.5	2.5	0.5%
Aggregate 2	600	1100	-0.5%	1095	592	-8	-1.3%
Sand	700	1800	3.0%	1854	760	60	8.5%
Aggregate 3	450	2250	0.5%	2261	407	-43	-9.5%
Total dry weight	2250	2250		2261			0.5%
Erratic Sand Flow 2	Recipe	Cumulativ e	Error	Cumulative Actual	Ingredient Quantity	Ingredient Error	Ingredient Error
Erratic Sand Flow 2 Aggregate 1	Recipe 500	Cumulative 500	Error 0.5%	Cumulative Actual 503	Ingredient Quantity 502.5	Ingredient Error 2.5	Ingredient Error 0.5%
				Actual	Quantity	Error	Error
Aggregate 1	500	500	0.5%	Actual 503	Quantity 502.5	Error 2.5	Error 0.5%
Aggregate 1 Aggregate 2	500 600	500 1100	0.5% -0.5%	Actual 503 1095	Quantity 502.5 592	Error 2.5 -8	Error 0.5% -1.3%

Factors affecting Batch Systems..

Cumulative Weighing or Individual Weighing.

Aggregate 2 600 592 592 0 0% Sand 700 758.5 661.5 -108 -15% Aggregate 3 450 407.25 516.25 108 23% Total dry weight 2250 2261.25 2261.25 0 0% Individual Weighers Advantages. - - - - An error on one ingredient has no flow on affect to the others. - Faster weigh up time. - - Measured batch is a greater % of the Full Scale Deflection. - Disadvantage. - -	American de	Recipe 500	Batch 1 502.5	Batch 2 502.5	Variation 0	Variation
Sand 700 759.5 651.5 -108 -15% Aggregate 3 450 407.25 515.25 108 23% Total dry weight 2250 2261.25 2261.25 0 0% Individual Weighers Advantages.	Aggregate 1				, i i i i i i i i i i i i i i i i i i i	0%
Aggregate 3 450 407.25 515.25 108 23% Total dry weight 2250 2261.25 2261.25 0 0% Individual Weighers Advantages. - </th <th></th> <th></th> <th></th> <th></th> <th>Ť</th> <th></th>					Ť	
Total dry weight22502261.2500%Individual WeighersAdvantages.An error on one ingredient has no flow on affect to the others.Faster weigh up time.Measured batch is a greater % of the Full Scale Deflection.Disadvantage.						
 Individual Weighers Advantages. An error on one ingredient has no flow on affect to the others. Faster weigh up time. Measured batch is a greater % of the Full Scale Deflection. Disadvantage. 					108	
 Advantages. An error on one ingredient has no flow on affect to the others. Faster weigh up time. Measured batch is a greater % of the Full Scale Deflection. Disadvantage. 	Total dry weight	2250	2261.25	2261.25	0	0%
 Measured batch is a greater % of the Full Scale Deflection. Disadvantage. 	 Advantages. An error on one ing 	gredient has n	o flow on affect	to the others.		
- Each weigher is unterent, so weigher to weigher errors carry over to all batches.	 Measured batch is Disadvantage. 	a greater % o			over to all bat	ches.

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><list-item><list-item><list-item><section-header><section-header>

- The primary initial measure is always dimensional.
- A further translation is required; kg/hr / kg/m3 = m3/hr where kg/m3 is the loose density of the particular ingredient material.
- Cross section of the feed stream is fixed.

- The movement of the metering device is divided up into increments such that each pulse represents a measured volume displacement.
- The metering parameter then becomes kg/pulse x pulses/hour.
- The metering rate is defined by pulses in unit time.
- The total mixed is the total of the pulses multiplied by the kg/pulse.
- If calibrations are correct, and speed control is accurate and smooth, this system offers superior repeatability.
- There are some variables however as in the batching system.

- Belt weighers utilize a set of rollers mounted separately on a frame called a "weigh platform".
- The weigh platform is calibrated by adding known weights.
- The weight should be a roller of known mass set immediately over the weighing roller, calibrated with a moving belt.
- Rollers must be perfectly aligned, or belt tension will be weighed.

"Numbers Problem #7."... Weigh Belt Feeders.. What do they tell you? Factors affecting Continuous Systems.

- Metering by "weight"...
- This means metering by mass flow rate.
- The cross section is fixed.
- The input variable is density.
- The controlled variable is speed.
- This approach requires a great deal of faith in the integrity of the weigher.

- Calibrate the system on a volumetric basis.
- Control the speed accurately to a fixed target for a particular throughput.
- Use the weigh platform to monitor the feed material density.
- In this approach;
- The accuracy of the speed control can be monitored.

"Numbers Problem #8."... Moisture Meters.. How good are they? Manufacturers of Moisture Meters are very reserved about specifying accuracy. Claims are general and mostly refer to repeatability. Accuracy is an absolute. Repeatability is an ability to return to a measure point, even if it is wrong. Electrical Resistance...Simple, but limited. Electrical Capacitance...Developed in France, but has difficulties. Infrared...Confused by sands of different colour. Microwave...Currently one of the better systems. RF attenuation...Suitable for liquids and pastes or finer materials. Nuclear...Accurate and repeatable, but not for general "on plant" use.

Factors affecting Continuous Systems. Binder Metering.

- Fine particulates are difficult to meter on a continuous basis.
- With aeration, they flow like water
- Some flyash is hygroscopic and does not flow at all!
- A successful binder feeder must;
- Be a positive displacement device.
- Prevent unrestrained flow from the silo.
- Deliver the same quantity per metering segment every time.
- A successful binder silo must;
- Ensure steady state flow without arching.
- Minimize the effect of head pressure.
- Re-loosen the binder to a repeatable state without inducing flooding.
- Maintain a negative pressure balance against filling.
- This is possible, but not always achieved.

Factors affecting Continuous Systems. **Binder Metering.**

- These are not positive displacement devices.
- Fluid binder can run through a stopped auger unimpeded.
- A poor choice.
- Positive displacement, but difficult to fill uniformly.
- Susceptible to build up of hydrated cement.
- This is the best option for sealing, and repeatable displacement.
- If well calibrated and used with a matching silo, results are excellent.

Aran SiloFeed III Cleated **Belt Feeder**

Factors affecting Continuous Systems. **Binder Metering.**

- Binder is usually weighed after metering in "weight rate" systems.
- Options are;
- Belt weighers...Accurate if well set up, but messy.
- Impact weighers...Quoted as Accuracy 0.5% of optimum? and Repeatability +/- 0.2% of rate.
- Coriolis weighers...Quoted as +/-0.5% (of what?)
- Post metering weighers are useful as a verification. Little value if the metering device preceding them is not highly repeatable.
- Loss of Weight Systems are also employed.
- Useful for checking calibration whilst operating.
- Must have effective sealing when isolated.
- All of these weight based systems must be calibrated.

Mixers. What is their job?

- Mix together all ingredients thoroughly into a homogeneous product.
- Coat the stone and fines with binder.
- Distribute water evenly.
- Disperse additives.

- Getting unevenly distributed ingredients uniformly distributed within the mix.
- Distributing binder and fines evenly and at the micro level.
- For either batch or Continuous applications, Twin Shaft mixes are the only serious RCC option.

Batch Mixers.

- There are many different configurations of mixing blades.
- Are all equally effective?
- Typically low speed, 25 RPM.
- Mixing is in the lower centre zone.
- Interleaving and folding process.
- Typical cycles are;
- Dose 20 secs
- Mix 30 secs
- Discharge 20+ seconds
- Thoroughness of micro mixing is difficult to measure.

Batch Mixing Time. Are all mixers created equal?

- Mixing thoroughness is a function of;
 - Number of mixing blades,
 - Blade Size and shape,
 - Interleave pattern,
 - Speed,
 - Time.

Mixing Time is not a Universal Number for all batch mixers.

Continuous Mixers.

- There are several different mixing blade configurations.
- The main differences are in the phasing.
- In feed is largely macro mixed at arrival.
- High intensity mixers do a better job of micro mixing.
- Typical features are;
- Length; 3 to 4.5 metres
- Number of mixing elements; 40 to 76
- Speed; 70 to 110 RPM.
- Mixing is in the upper centre zone.
- Collision and division process.

What do the Numbers Tell You?

- There is no demonstrated evidence to support the superiority of one technology over the other.
- If well executed, both will work and give good results.
- Failure to understand either, or using them outside of their capabilities will produce inferior RCC.
- Which is the most efficient?
- The answer has to come down on the side of the system which is the smoothest, most compact, fastest to set up, and least costly.
- To my best engineering analysis, that is the Continuous System.
- If you want a batch system which is more than twice as big to do the same job, because it works only part time, then I can build you one of them to.

How does it affect me?

- Specification writers.
- Contractors.
- Site Engineers & Inspectors.
- Understanding the principles and limitations of each system will lead to better defined specifications, correct use of equipment, and more meaningful compliance procedures.